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Abstract. We develop a general scheme for the use of Fermi operators within the framework of
integrable systems. This enables us to read off a fermionic Hamiltonian from a given solution
of the Yang–Baxter equation and to express the correspondingL-matrix and the generators
of symmetries in terms of Fermi operators. We illustrate our approach through a number of
examples. Our main example is the algebraic Bethe ansatz solution of the Hubbard model in
the infinite coupling limit.

Introduction

The purpose of this article is to consider graded vector spaces and the graded Yang–Baxter
algebra in such a way that the explicit construction of integrable models in terms of Fermi
operators becomes easy. We will present simple general formulae, which will enable
expression of Hamiltonian,L-matrix, Yang–Baxter algebra and generators of symmetries in
terms of Fermi operators, once a solution of the Yang–Baxter equation is given.

The material developed below has its origin in two articles of Kulish and Sklyanin
[1, 2], where fundamental, graded integrable lattice systems were considered for the first
time. Although most of the basic ideas are outlined in [1, 2], these articles remain rather
sketchy as far as concrete representations in terms of Fermi operators are concerned. We
shall try to explain in the following that this is a topic with an interest of its own.

We would like to emphasize that the construction of fermionic representations is a
subject which has to be seen separately from the construction of integrable models invariant
under Lie superalgebras or their deformations (cf, e.g. [3–5]). Although Lie superalgebra
invariant models are most naturally represented in terms of Fermi operators, there is no
need to do so. On the other hand, there are models, such as the Hubbard model, or its
infinite coupling limit, to be treated below, which are not invariant under graded algebras,
but have their most interesting interpretation in terms of Fermi operators. The possibility
of connecting a given solution of the Yang–Baxter equation with a fermionic representation
is only restricted by a rather weak compatibility condition (equation (26)). Thus there may
be different fermionic representations of the same model, which correspond to different
gradings.

One possibility to connect spin models with fermionic models, which is frequently
encountered in the literature, is the Jordan–Wigner transformation. This transformation

§ E-mail address: goehmann@insti.physics.sunysb.edu
‖ E-mail address: murakami@appi.t.u-tokyo.ac.jp

0305-4470/98/387729+21$19.50c© 1998 IOP Publishing Ltd 7729
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is mostly applied on the level of Hamiltonians. Applying it to the Yang–Baxter algebra
is a feasible, yet cumbersome task. The Jordan–Wigner transformation led to important
progress, e.g. in the understanding of the Hubbard model [6, 7]. We shall argue, however,
that it is an unnecessary element for the construction of fermionic representations and that
the route taken in the present article leads to a clearer understanding of the issue. The
Jordan–Wigner transformation does not preserve the boundary conditions. It may obstruct
symmetries, and is not easily generalizable to an arbitrary number of internal degrees of
freedom.

The plan of the present paper is as follows. We first present some necessary
mathematical preliminaries. We introduce the parity, a concept of odd and even on the
basis of a finite-dimensional vector space, which is then called a graded vector space.
Later this will allow us to make contact with Fermi operators. We extend the concept of
parity to endomorphisms of the vector space and to tensor powers of endomorphisms. The
central definition is equation (12), which provides an embedding of a ‘local’ basis{eβα } of
endomorphisms into a ‘chain ofL sites’,{eβα } → {ej βα}, in such a way that theej βα , depending
on the value ofα andβ, either commute or anticommute. Theej βα are ‘graded analogues
of spin operators’. It will turn out later that they can be directly replaced by fermionic
projection operators. This is an advantage of considering the grading on a basis rather
than on coordinates. Before turning to fermions, we have to develop the quantum inverse
scattering method using the basis{ej βα}. We try to keep the analogy to the non-graded case
as close as possible and try to emphasize in our presentation the modifications due to the
grading. We discuss the general case of global symmetries, which, due to the grading are
subalgebras of Lie superalgebras. Later, after having introduced Fermi operators, we look
at the example of gauge transformations, where we also discuss the local case.

Finally, we illustrate our approach with a number of examples. Most of these examples
will be familiar to the reader. They were chosen for this reason. The last example, however,
is new and of its own interest. Our approach allows us to identify theR-matrix of the
Hubbard model in the infinite coupling limit as a member of a family ofR-matrices of
su(N ) XX chains, which was recently proposed by Maassarani and Mathieu [8]. Since the
example is new, we work it out in some detail. We perform an algebraic Bethe ansatz for
the model and investigate its symmetries and the question of completeness of the algebraic
Bethe ansatz eigenstates.

Graded vector spaces

Within the formalism of second quantization a physical lattice system can be entirely
described by a set of creation and annihilation operatorsa+jα, ajα of particles at sitej of the
lattice. Depending on the indexα these particles may be bosons or fermions. Accordingly,
they commute or anticommute at different sites,

ajαakβ ± akβajα = 0 j 6= k. (1)

Let us consider systems with a finite number of states per site, saym bosonic andn
fermionic states,α = 1, . . . , m+n. We can look for matrix representations of the operators
ajα acting on tensor products of the local spaceCm+n. For spinless fermions, for instance,
such a representation is provided by the Jordan–Wigner transformation. Unoccupied sites
are bosonic, occupied sites are fermionic.

If we want to describe the general situation, it turns out to be useful to reverse the above
reasoning. Let us start from a local space of statesV , which is then isomorphic toCm+n,
and let us impose an additional structure, the parity, from the outset. LetV = V0 ⊕ V1,
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and callv0 ∈ V0 even,v1 ∈ V1 odd. The subspacesV0 andV1 are called the homogeneous
components ofV . The parityp is a functionVi −→ Z2 defined on the homogeneous
components ofV ,

p(vi) = i i = 0, 1 vi ∈ Vi. (2)

The vector spaceV equipped with this structure is called a graded vector space or superspace.
Fix a basis{e1, . . . , em+n} of definite parity. Letp(α) := p(eα). Since we want to construct
an algebra of commuting and anticommutingoperators, we have to extend the concept of
parity to operators in End(V ) and to tensor products of these operators. Leteβα ∈ End(V ),
eβαeγ = δβγ eα. {eβα } is a basis of End(V ). If we representeγ as a column matrix with
only non-vanishing entry 1 in rowγ , theneβα is an (m + n) × (m + n) matrix with only
non-vanishing entry 1 in rowα and columnβ. Define the parity of rows and columns,

pr(e
β
α) = p(α) pc(e

β
α) = p(β) (3)

and the parity of matrices

p(eβα) = p(α)+ p(β). (4)

With this definition End(V ) becomes a graded vector space.
TakeX, Y from the homogeneous components of End(V ), and define the superbracket

[X, Y ]± = XY − (−1)p(X)p(Y )YX. (5)

Extend the superbracket linearly in both of its arguments to End(V ). Then, End(V ) endowed
with the superbracket becomes the Lie superalgebra gl(m|n). Note that the above definition
of a superbracket makes sense in any graded algebra. We will also use it in the context of
graded tensor powers of End(V ), which is our next issue.

The notion of a grading may be extended to theL-fold tensor product of End(V ), setting

pr(e
β1
α1
⊗ · · · ⊗ eβLαL ) = p(α1)+ · · · + p(αL) (6)

pc(e
β1
α1
⊗ · · · ⊗ eβLαL ) = p(β1)+ · · · + p(βL) (7)

p(eβ1
α1
⊗ · · · ⊗ eβLαL ) = p(α1)+ p(β1)+ · · · + p(αL)+ p(βL). (8)

It can be seen from the last formula, that homogeneous elementsA = Aα1...αL
β1...βL

eβ1
α1
⊗· · ·⊗eβLαL

of (End(V ))⊗L with parity p(A) are characterized by the equation

(−1)
∑L
j=1(p(αj )+p(βj ))Aα1...αL

β1...βL
= (−1)p(A)Aα1...αL

β1...βL
. (9)

This implies thatAB is homogeneous with parity

p(AB) = p(A)+ p(B) (10)

if A andB are homogeneous.
The above definitions allow us to introduce another tensor product structure⊗s , which

is called the graded or supertensor product, on exterior powers of End(V ). Choosev and
w from the homogeneous components of(End(V ))⊗k and(End(V ))⊗l , respectively. Then,
by definition,

v ⊗s w = (−1)p(v)pr (w)v ⊗ w. (11)

As a simple consequence of this definition, the supertensor product is associative,(u ⊗s
v) ⊗s w = u ⊗s (v ⊗s w). This follows first for u, v, w taken from the homogeneous
components of certain powers of End(V ), and then by linearity for arbitraryu, v andw.
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Here comes the central definition of the paper. The supertensor product induces an
embedding ofeβα into (End(V ))⊗L,

ej
β
α
= I⊗s (j−1)

m+n ⊗s eβα ⊗s I⊗s (L−j)m+n (12)

= (−1)(p(α)+p(β))
∑L

k=j+1 p(γk)I
⊗(j−1)
m+n ⊗ eβα ⊗ eγj+1

γj+1 ⊗ · · · ⊗ eγLγL . (13)

Im+n in this equation denotes the(m + n) × (m + n) unit matrix. In the second equation
summation over double tensor indices is understood. The indexj on the left-hand side of
(12) will be called site index. The matricesej βα realize relations of the form (1). Forj 6= k
we find

ej
β
α
ek
δ
γ = (−1)(p(α)+p(β))(p(γ )+p(δ))ekδγ ej

β
α
. (14)

It follows from equation (13) thatej βα is homogeneous, and that

p(ej
β
α
) = p(α)+ p(β). (15)

Hence, in agreement with intuition, equation (14) says that odd matrices mutually
anticommute, whereas even matrices commute with each other as well as with the odd
matrices. For products of matricesej βα which are acting on the same site (13) implies

ej
β
α
ej
δ
γ
= δβγ ej δα. (16)

Using the superbracket, (14) and (16) may be combined to

[ej
β
α
, ek

δ
γ ]± = δjk(δβγ ej δα − (−1)(p(α)+p(β))(p(γ )+p(δ))δδαej

β
γ
). (17)

The right-hand side of the latter equation withj = k gives the structure constants of the
Lie superalgebra gl(m|n) with respect to the basis{ej βα}.

The permutation operator

The permutation operator plays an important role in the construction of local integrable
lattice models. In the graded case it requires the following modifications of signs,

Pjk = (−1)p(β)ej
β
α
ek
α
β. (18)

This operator induces the action of the symmetric groupSL on the site indices of the
matricesej βα . The following properties are easily verified, they follow from (14) and (16),

Pkj = Pjk (19a)

Pjj = (m− n) id (19b)

P 2
jk = id j 6= k (19c)

Pjkek
β
α = ej βαPjk (19d)

Pjkel
β
α = elβαPjk j 6= l 6= k. (19e)

Because of (19d) and (19e) Pjk generates a faithful representation ofSL,

PjkPkl = PjlPjk = PklPjl. (20)

Let L = 2. Then

P12 = (−1)p(β)e1
β
αe2

α
β = (−1)p(α)p(β)eβα ⊗ eαβ = (−1)p(α)p(β)δαδ δ

β
γ e

γ
α ⊗ eδβ . (21)

From the right-hand side of this equation we can read off the matrix elements ofP12 with
respect to the canonical basis of End(V ⊗ V ).
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Figure 1. The Yang–Baxter equation is most easily memorized in graphical form.

Figure 2. Identification of theR-matrix with a vertex.

The graded Yang–Baxter algebra

In the present context it is most suitable to interpret the Yang–Baxter equation as a set of
functional equations for the matrix elements of an(m+n)2× (m+n)2-matrixR(u, v). We
may represent it in graphical form as shown in figure 1, where each vertex corresponds to
a factor in the equation

R
αβ

α′β ′(u, v)R
α′γ
α′′γ ′(u,w)R

β ′γ ′
β ′′γ ′′(v,w) = Rβγβ ′γ ′(v,w)Rαγ

′
α′γ ′′(u,w)R

α′β ′
α′′β ′′(u, v). (22)

Note that there is a direction assigned to every line in figure 1, which is indicated by the tips
of the arrows. Therefore every vertex has an orientation, and vertices andR-matrices can be
identified according to figure 2, where indices have been supplied to a vertex. Summation
is over all inner lines in figure 1.

Starting from the Yang–Baxter equation we will construct a fundamental graded
representation of the Yang–Baxter algebra. For comparison let us briefly recall the non-
graded case (n = 0). DefineŘ(u, v) as

Ř
αβ

γ δ (u, v) = Rβαγ δ (u, v). (23)

Introduce theL-matrix at sitej ,

Lj
α
β
(u, v) = Rαγβδ (u, v)ej δγ . (24)

Then multiplication of the Yang–Baxter equation (22) byej γ
′′
γ

implies that

Ř(u, v)(Lj (u,w)⊗ Lj(v,w)) = (Lj (v,w)⊗ Lj(u,w))Ř(u, v) (25)

where the tensor product is now a tensor product between matrices, according to the
convention(A ⊗ B)αγβδ = AαβB

γ

δ . We may replaceLj in (25) by some matrixT and
may interpret it as defining an abstract algebra for the matrix elements ofT . This algebra is
called a Yang–Baxter algebra withR-matrixR. Lj is called its fundamental representation.
SinceL-matrices at different sites commute, any product ofL-matrices with different site
indices is another representation of the same Yang–Baxter algebra.
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The construction of a graded Yang–Baxter algebra and its fundamental representation
requires only minimal modifications of the above scheme. Let us assume we are given a
solution of (22), which is compatible with the grading in the sense that

R
αβ

γ δ (u, v) = (−1)p(α)+p(β)+p(γ )+p(δ)Rαβγ δ (u, v). (26)

Define a gradedL-matrix at sitej as

Lj αβ(u, v) = (−1)p(α)p(γ )Rαγβδ (u, v)ej
δ
γ
. (27)

Equation (26) implies that the matrix elements ofLj (u, v) are of definite parity,

p(Lj αβ(u, v)) = p(α)+ p(β) (28)

and that they commute as

Lj αβ(u, v)Lk
γ

δ (w, z) = (−1)(p(α)+p(β))(p(γ )+p(δ))Lkγδ (w, z)Lj αβ(u, v). (29)

It further follows from the Yang–Baxter equation (22) and from equation (26) that

Ř(u, v)(Lj (u,w)⊗s Lj (v, w)) = (Lj (v, w)⊗s Lj (u,w))Ř(u, v). (30)

In analogy to the non-graded case above, the supertensor product in this equation is to be
understood as a supertensor product of matrices with non-commuting entries,(A⊗s B)αγβδ =
(−1)(p(α)+p(β))p(γ )AαβB

γ

δ . In a sense this definition is a contravariant counterpart of equation
(11). Given matricesA, B, C, D with operator valued entries, which mutually commute
according to the same rule asLj andLk in equation (29), we obtain for the product of two
supertensor products

(A⊗s B)(C ⊗s D) = AC ⊗s BD. (31)

Equation (30) may be interpreted as defining a graded Yang–Baxter algebra withR-matrix
R. Lj is then its fundamental representation.

Starting from (30) we can construct integrable lattice models as in the non-graded
case. Let us briefly recall the construction with emphasis on the modifications that appear
due to the grading. Define a monodromy matrixT (u, v) as anL-fold ordered product of
fundamentalL-matrices,

T (u, v) = LL(u, v) . . .L1(u, v). (32)

Due to equation (10) the matrix elements ofT (u, v) are homogeneous with parity
p(T αβ (u, v)) = p(α) + p(β). Repeated application of (30) and (31) shows that this
monodromy matrix is a representation of the graded Yang–Baxter algebra,

Ř(u, v)(T (u,w)⊗s T (v,w)) = (T (v,w)⊗s T (u,w))Ř(u, v). (33)

In the non-graded case (n = 0) the supertensor product in (33) agrees with the usual tensor
product. Multiplying (33) byŘ−1(u, v) and taking the trace of the whole equation then
implies that [tr(T (u,w)), tr(T (v,w))] = 0, and the transfer matrix tr(T (u,w)) provides a
generating function of mutually commuting operators, which may take the role of conserved
quantities of an integrable lattice model. For non-trivial grading the trace has to be replaced

by the supertrace, which is generally defined as str(A) = (−1)
∑N
j=1 p(αj )Aα1...αN

α1...αN
. Then (33)

implies that

[str(T (u,w)), str(T (v,w))] = 0 (34)

in complete analogy with the non-graded case.



Fermionic representations of integrable lattice systems 7735

Let us assume thatR(u, v) is a regular solution of the Yang–Baxter equation. This
means that there are valuesu0, v0 of the spectral parameters such thatR

αβ

γ δ (u0, v0) = δαδ δβγ .
Then (27) implies

Lj αβ(u0, v0) = (−1)p(α)p(β)ej
α
β

(35)

and we can easily see that the supertrace of the monodromy matrix at(u0, v0) generates a
shift by one site,

str(T (u0, v0)) = (−1)p(α)T αα (u0, v0)

= (−1)
∑L−1

k=1 p(βk)e1
β1
βL
e2
β2
β1
e3
β3
β2
. . . eL

βL
βL−1

= P12P23 . . . PL−1L =: Û . (36)

This implies thatτ(u) := ln(str(T (u, v0))) generates a sequence of local operators [9]
which, as a consequence of (34), mutually commute,

τ(u) = i5̂+ (u− u0)Ĥ +O((u− u0)
2). (37)

5̂ in this expansion is the momentum operator. On a lattice, where the minimal possible
shift is by one site, and thuŝU rather than5̂ is the fundamental geometrical operator, some
care is required in the definition of̂5. As was shown in [10] a proper definition may be
obtained by setting5 := −i ln(Û)mod2π and expressing the functionf (x) = xmod2π by
its Fourier sum. Then̂5 becomes a polynomial in̂U .

5̂ = φ
L−1∑
m=1

(
1

2
+ Ûm

e−iφm − 1

)
(38)

whereφ = 2π/L. The first-order termĤ in the expansion (37) may be interpreted as
Hamiltonian. Using (36) it is obtained as

Ĥ =
L∑
j=1

Hjj+1 (39)

whereHLL+1 = HL1 and

Hjj+1 = (−1)p(γ )(p(α)+p(γ ))∂u Ř
αβ

γ δ (u, v0)

∣∣∣
u=u0

ej
γ
α
ej+1

δ
β
. (40)

We would like to draw the reader’s attention to the following points. (i) TheR-matrix Ř in
equation (30) doesnot undergo a modification due to the grading. (ii) The only necessary
compatibility condition which has to be satisfied in order to introduce gradedL-matrices is
equation (26). As we shall see in the examples below, this is a weak condition. A given
R-matrix may be compatible with different gradings, leading to different gradedL-matrices.

A first example

As mentioned above the matricesej βα for fixed j form ‘local’ representations of gl(m|n).
After summing over all sites, we obtain a ‘global’ representation,

Eβα =
L∑
j=1

ej
β
α

(41)

[Eβα ,E
δ
γ ]± = δβγ Eδα − (−1)(p(α)+p(β))(p(γ )+p(δ))δδαE

β
γ . (42)

TheEβα are symmetric in the site indices by construction. Thus [Pjj+1, E
β
α ] = 0, and we

obtain a gl(m|n) invariant Hamiltonian, if we are able to find a solution of the Yang–Baxter
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equation (22), which leads toHjj+1 = Pjj+1 in equation (40). Then, comparing (18) and
(40), ∂uR

αβ

γ δ (u, v0)|u=u0 = (−1)p(α)p(β)δαγ δ
β

δ . Taking into account regularity, we find the
following minimal ansatz forR(u, v),

R
αβ

γ δ (u, v) = δαδ δβγ + (u− v)(−1)p(α)p(β)δαγ δ
β

δ (43)

which is indeed a well known rational solution of the Yang–Baxter equation [2].

Global symmetries from local symmetries

We are going to consider now the general case of symmetries of the monodromy matrix,
which stem from Lie superalgebra invariance of theR-matrix in a sense to be specified.
Choosex = xαβ eβα homogeneous from gl(m|n). Let xj := xαβ ej βα andX :=∑L

j=1 xj . Define

R̃
αγ

βδ (u, v) := (−1)p(α)p(γ )Rαγβδ (u, v). Assume thatR̃(u, v) satisfies the invariance equation

R̃
αγ

β ′δ(u, v)x
β ′
β + R̃αγβδ′(u, v)xδ

′
δ

= (−1)p(x)(p(α
′)+p(β))xαα′R̃

α′γ
βδ (u, v)+ (−1)p(x)(p(α)+p(β))xγγ ′R̃

αγ ′
βδ (u, v). (44)

From here we can move step by step to the invariance of the transfer matrix str(T (u, v)).
Contraction of (44) withej δγ yields

Lj αβ ′(u, v)x
β ′
β + Lj αβ(u, v)xj
= (−1)p(x)(p(α

′)+p(β))xαα′Lj α
′
β
(u, v)+ (−1)p(x)(p(α)+p(β))xjLj αβ(u, v) (45)

and it can be shown by induction overL that the monodromy matrix satisfies

T αγ (u, v)x
γ

β + T αβ (u, v)X
= (−1)p(x)(p(γ )+p(β))xαγ T

γ

β (u, v)+ (−1)p(x)(p(α)+p(β))XT αβ (u, v). (46)

We finally take the supertrace of this equation and arrive at

[str(T (u, v)),X] = 0. (47)

In many cases the symmetry of theR-matrix is evident by construction, e.g. when the
R-matrix is an intertwiner of representations of quantum groups. Yet there are examples,
as Shastry’sR-matrix of the Hubbard model [6, 7], where the symmetries are less obvious
[10, 11]. Moreover, as can be seen by the above derivation, the symmetries of the transfer
matrix are determined by the symmetries ofR̃ rather thanR. The symmetries of̃R depend
on the choice of the grading.

It may be argued that, in the presence of a grading, the matrixR̃ is more fundamental
thanR, sinceR̃ determines theL-matrix, equation (27), the symmetries of the model and,
if it exists, the semiclassical limit [1]. Substituting̃R into the Yang–Baxter equation (22),
we obtain the so-called graded Yang–Baxter equation, which equivalently might have been
taken as the starting point of our section on the graded Yang–Baxter algebra. Since it is
the non-graded matrix̌R, however, which fixes the structure of the Yang–Baxter algebra,
equation (30), we stood away from this point of view.

Representations in terms of fermions

In this section we shall explain how the various graded objects, which have been introduced
so far, can be expressed in terms of Fermi operators. To begin with, consider spinless
fermions on a ring ofL lattice sites,

{cj , ck} = {c†j , c†k} = 0 {cj , c†k} = δjk j, k = 1, . . . , L. (48)
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Locally there are two states, every site is either occupied by a fermion or it is empty.
Slightly deviating from the usual language we may say thatcj and c†j annihilate or create

the occupied state. Let us define a pairaj 1, aj
†
1 of (trivial) annihilation and creation operators

of the unoccupied state by settingaj 1 = aj †1 = 1, and let us writeaj 2 = cj , aj †2 = c†j . Let

nj = c†j cj denote the density operator. The operators

Yj
β
α
= aj †α(1− nj )aj β (49)

are then obviously local projection operators, i.e. they satisfy

Yj
β
α
Yj
δ
γ
= δβγ Yj δα. (50)

They carry parity, induced by the anticommutation rule for the Fermi operators. Letj 6= k.
ThenYj βα andYkδγ anticommute, if both are built up of an odd number of Fermi operators,
and commute in all other cases. This fact can be expressed as follows. Letp(1) = 0,
p(2) = 1 andp(Yj βα) = p(α)+ p(β). ThenYj βα is odd (contains an odd number of Fermi
operators), ifp(Yj βα) = 1, and even, ifp(Yj βα) = 0. The commutation rules for the projectors
Yj
β
α

are thus

Yj
β
α
Yk
δ
γ = (−1)(p(α)+p(β))(p(γ )+p(δ))Ykδγ Yj

β
α
. (51)

As a memorizing scheme for the projection operators let us combine them into the matrix
(Yj )

α
β = Yj βα ,

Yj =
(

1− nj cj

c
†
j nj

)
. (52)

(50) and (51) are representations of equations (14) and (16) in the particular casem = n = 1.
Since all our considerations in the previous sections entirely relied on equations (14)
and (16), we may simply replaceej βα by Yj βα in equations (18), (27) and (40) to obtain
fermionic representations of the permutation operator, theL-matrix and the Hamiltonian.
The permutation operator (forj 6= k) becomes

Pjk = Yj 1
1Yk

1
1+ Yj 1

2Yk
2
1− Yj 2

1Yk
1
2− Yj 2

2Yk
2
2

= 1− (c†j − c†k)(cj − ck). (53)

Fermionic representations compatible with arbitrary grading can be constructed by
considering several species of fermions and graded products of projection operators. We
shall explain this for the case of two species first. This is the most interesting case for
applications, since we may interpret the two species as up- and down-spin electrons. We
have to attach a spin index to the Fermi operators,cj → cjσ , σ =↑,↓, {cjσ , c†kτ } = δjkδστ .
Accordingly, there are two species of projection operators,Yj

β
α
→ Y σj

β

α
,

Y
↑
j

β

α
Y
↓
j

δ

γ
= (−1)(p(α)+p(β))(p(γ )+p(δ))Y ↓j

δ

γ
Y
↑
j

β

α
. (54)

Let us define projection operators for electrons by the tensor products

Yj
βδ
αγ
= (−1)(p(α)+p(β))p(γ )Y ↓j

β

α
Y
↑
j

δ

γ
= (Y ↓j ⊗s Y ↑j )αγβδ . (55)

Then

Yj
βδ
αγ
Yj
β ′δ′
α′γ ′ = δβα′δδγ ′Yj β

′δ′
αγ
. (56)

Yj
βδ
αγ

inherits the parity fromY ↓j
β

α
andY ↑j

δ

γ
. The number of Fermi operators contained in

Yj
βδ
αγ

is the sum of the number of Fermi operators inY ↓j
β

α
and Y ↑j

δ

γ
. Hencep(Yj βδαγ ) =
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p(Y
↓
j

β

α
)+p(Y ↑j

δ

γ
) = p(α)+· · ·+p(δ), and the analogue of (51) holds forYj βδαγ , too. Again

we present all projection operators in the form of a matrix(Yj )
αγ

βδ = Yj βδαγ ,

Yj = Y ↓j ⊗s Y ↑j

=


(1− nj↓)(1− nj↑) (1− nj↓)cj↑ cj↓(1− nj↑) cj↓cj↑
(1− nj↓)c†j↑ (1− nj↓)nj↑ −cj↓c†j↑ −cj↓nj↑
c
†
j↓(1− nj↑) c

†
j↓cj↑ nj↓(1− nj↑) nj↓cj↑

−c†j↓c†j↑ −c†j↓nj↑ nj↓c
†
j↑ nj↓nj↑

 . (57)

Here we used the standard ordering of matrix elements of tensor products, corresponding
to a renumbering(11) → 1, (12) → 2, (21) → 3, (22) → 4. Within this convention
Yj
βδ
αγ

is replaced byYj βα , α, β = 1, . . . ,4, which then satisfies (50) and (51) with grading
p(1) = p(4) = 0, p(2) = p(3) = 1.

The permutation operator of electrons turns out to be a product of permutation operators
of up- and down-spin electrons,

Pjk = (−1)p(β)+p(δ)Yj βδαγ Yk
αγ

βδ

= (−1)p(β)+p(δ)+(p(α)+p(β))(p(γ )+p(δ))Y ↓j
β

α
Y
↑
j

δ

γ
Y
↓
k

α

β
Y
↑
k

γ

δ

= (−1)p(β)Y ↓j
β

α
Y
↓
k

α

β
(−1)p(δ)Y ↑j

δ

γ
Y
↑
k

γ

δ
= P ↓jkP ↑jk = P ↑jkP ↓jk. (58)

So far we have considered the case of spinless fermions with two-dimensional local
space of states and gradingm = n = 1, and the case of electrons with four-dimensional
space of states and gradingm = n = 2. There are four different possibilities to realize
(14) and (16) in case of a three-dimensional local space of states,m+ n = 3. They can be
obtained by deleting theα’s row and column of the matrixYj in equation (57),α = 1, 2, 3, 4.
(50) and (51) remain valid, since the operatorsYj βα are projectors.

As an example let us consider the case where the fourth row and column ofYj ,
equation (57), are deleted. The local Hilbert space is then spanned by the three states
|0〉, c†j↑|0〉, c†j↓|0〉, i.e. double occupancy is now excluded. The operator

3∑
α=1

Yj
α
α
= 1− Yj 4

4 = 1− nj↑nj↓ (59)

projects the local Hilbert space of electrons onto the space with no double occupancy. The
global projection operator for a chain ofL sites is given by the product

1 =
L∏
j=1

(1− nj↑nj↓). (60)

The permutation operatorPjk is again given by equation (18) withYj βα replacing ej βα .
Summation is now over three values,α, β = 1, 2, 3, and the grading isp(1) = 0,
p(2) = p(3) = 1. An elegant way of taking into account the simplifications arising
from the restriction to the Hilbert space with no double occupancy is to considerPjk1

instead ofPjk. Sincenj↑nj↓1 = 0, we obtain

Pjk1 = 1(c†jσ ckσ + c†kσ cjσ )1− 2(Saj S
a
k − 1

4njnk)1+ (1− nj − nk)1. (61)

Here we have introduced the electron densitynj = nj↑ + nj↓ and the spin densities

Saj = 1
2σ

a
αβc
†
jαcjβ . (62)
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The σa, a = x, y, z, are the Pauli matrices, and we identify 1 with↑ an 2 with↓ in the
summation overα andβ. The spin densities can alternatively be written as

Saj = 1
2(σ

a)αβYj
β+1
α+1. (63)

Using

(σ a ⊗ σa)αγβδ = 2δαδ δ
γ

β − δαβδγδ (64)

we obtain (
Yj

1
1Yk

1
1−

3∑
α,β=2

Yj
β
α
Yk
α
β

)
1 = (−2(Saj S

a
k − 1

4njnk)+ 1− nj − nk)1 (65)

which gives the second and third term on the right-hand side of (61). Note that the
permutation operatorPjk in equation (61) is no longer a product as in equation (58).

It should be clear by now, how to generalize the above considerations to an arbitrary
number of species of fermions. In the case ofN species we may define

Yj
β1...βN
α1...αN

= (YNj ⊗s · · · ⊗s Y 1
j )

α1...αN
β1...βN

. (66)

Then

Yj
β1...βN
α1...αN

Yj
δ1...δN
γ1...γN

= δβ1
γ1
. . . δβNγN Yj

δ1...δN
α1...αN

(67)

Yj
β1...βN
α1...αN

Yk
δ1...δN
γ1...γN

= (−1)
∑N
j,k=1(p(αj )+p(βj ))(p(γk)+p(δk))Ykδ1...δN

γ1...γN
Yj
β1...βN
α1...αN

(68)

which can be shown by induction over the number of species. Here the grading is
m = n = 2N−1. The most general case is obtained by deleting rows and columns fromYj ,
equation (66), in analogy to the example considered above.

Let us note that the operatorsYj βα for two species of fermions appear under the name
Hubbard projection operators in the literature.

Gauge transformations

The canonical anticommutation relations (48) are invariant under local gauge transformations

cj → ĉj = eiϕj cj ϕj ∈ [0, 2π ]. (69)

Thus all our formulae remain correct, if we replacecj by ĉj . The local gauge transformation
induces a transformation of the matrixYj of projection operators,

Yj → Ŷj = eiϕj σ z/2Yje
−iϕj σ z/2 = e−iϕj nj Yje

iϕj nj . (70)

Hereσ z is a Pauli matrix. In the case ofN species of fermions there areN gauge parameters
ϕσj , σ = 1, . . . , N . Since eiϕ

σ
j σ

z/2 is diagonal, the form (70) of the transformation rule for
Yj carries over to the case ofN species. Let

Gj = eiϕNj σ
z/2⊗ · · · ⊗ eiϕ1

j σ
z/2. (71)

Then

Yj → Ŷj = GjYjG†j . (72)

For the sake of simplicity we assume in the following that we are dealing with two species
of fermions. Note, however, that the following considerations also apply in the most general
case, where we would have to deal with a sub-matrix ofYj , equation (66). TheL-matrix
(27) behaves under gauge transformations as

L̂j
α

β
= G†j

α

α′
(−1)p(α

′)p(γ ′)R̂j
α′γ ′

β ′δ′ (u, v)Yj
δ′
γ ′Gj

β ′
β . (73)
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Here we defined

R̂j (u, v) = (Gj ⊗Gj)R(u, v)(G†j ⊗G†j ). (74)

Let us consider two implications of gauge invariance of theR-matrix.
(i) Global gauge transformations. Assume thatGj = G, j = 1, . . . L, and that

R̂(u, v) = R(u, v), say, for arbitraryϕ↑, ϕ↓ (↑= 1, ↓= 2). Taking the derivative of
(74) with respect toϕ↑ at ϕ↑ = ϕ↓ = 0 yields

[R(u, v), I2⊗ σ z ⊗ I4+ I4⊗ I2⊗ σ z] = 0. (75)

SinceI2⊗ σ z ⊗ I4 andI4⊗ I2⊗ σ z are diagonal, we may replaceR(u, v) in this equation
by R̃(u, v). Then (44) is satisfied withx = I2 ⊗ σ z. Thus the transfer matrix commutes
with

X =
L∑
j=1

(Yj
1
1− Yj 2

2+ Yj 3
3− Yj 4

4) =
L∑
j=1

(1− 2nj↑) (76)

which means that the number of up-spin electrons is conserved. A similar statement is
easily verified for the number of down-spin electrons or, in the weaker case, when (74) is
only satisfied forϕ↑ = ϕ↓, for the total number of electrons.

(ii) Local gauge transformations. Assume thatGj = (G)j , whereG is a fixed matrix
as in the example above, and thatR(u, v) is invariant underG. Then

L̂j (u, v) = (G†)jLj (u, v)(G)j (77)

and the transformed monodromy matrix becomes a simple expression in terms of the original
L-matrices,

T̂ (u, v) = (G†)LLL(u, v)GLL−1(u, v)G . . .L1(u, v)G. (78)

Transformations of this type can be used to introduce a phase factor into a typical nearest-
neighbour hopping term as it appears in the Hubbard Hamiltonian. If the phase factor is just
−1, then the hopping term changes sign. The factor(G†)L generally modifies the transfer
matrix str(T̂ (u, v)). It leads to a twist of the periodic boundary conditions. Note, however,
that it may happen for certain values ofL, e.g. ifL is divisible by 2 or by 4, that(G†)L = 1.

Gauge transformations of the type considered modify the shift operator. Using the
right-hand side of (70) in equation (36) we can easily see that

Û → eiLϕσ n1σ−iϕσ
∑L
j=1 njσ Û (79)

where summation overσ =↑,↓ is implied. The first term in the exponent of (79) is related
to a twist of boundary conditions.

At this point we shall not go into further detail, because we think that more detailed
considerations are only sensible in the context of concrete models. Let us only remark that
global symmetries of a given model may be affected by the exponent in equation (79), even
if there is no twist, i.e. even if the first term is equal to zero modulo 2π .

In the context of integrable fermionic models the term gauge transformation has,
unfortunately, two different meanings, which should not be confused. Besides the meaning
discussed above it is also used for transformations on theR-matrix of the formR →
(G⊗G)R(G−1⊗G−1), whereG is not necessarily a diagonal matrix. Transformations of
this form leave the Yang–Baxter equation (22) invariant.
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More examples

To illustrate the formal discussions of the preceding sections let us further elaborate on the
models with rationalR-matrices (43). These models have been studied exhaustively in the
literature. They appeared first as lattice gas models of Lai [12] and Sutherland [13] and were
solved by coordinate Bethe ansatz. Later Kulish studied them within the framework of the
graded quantum inverse scattering method and obtained spectrum and eigenstates by means
of the nested algebraic Bethe ansatz [2]. Still Kulish did not write down any Hamiltonian
density in terms of Fermi operators. This was first accomplished by Schlottmann for the
gl(1|2) invariant case [14]. The Hamiltonian in fermionic representation is the Hamiltonian
of the supersymmetrict–J -model. Schlottmann solved it again by means of the coordinate
Bethe ansatz. However, he was not aware of the underlying algebraic structure. The
underlying algebraic structure was successively unravelled by different authors [15–17]
leading to a solution of the super symmetrict–J -model by nested algebraic Bethe ansatz
[17, 18]. The gl(2|2) invariant model with the Hamiltonian in fermionic representation was
studied by Eßleret al [19, 20].

Let us write down Hamiltonian,R-matrix, L-matrix and generators of symmetries for
the gl(1|1) invariant case using the fermionic representation (52). TheR-matrix follows
from (43) withp(1) = 0, p(2) = 1,

Ř(u, v) =


1+ u− v

1 u− v
u− v 1

1− u+ v

 . (80)

TheL-matrix is obtained from (27),

Lj (u, v) =
(
u− v + ej 1

1 ej
1
2

ej
2
1 u− v − ej 2

2

)
(81)

→
(
u− v + 1− nj c

†
j

cj u− v − nj
)
. (82)

As the Hamiltonian density we may choose

Hjj+1 = −Pjj+1 = (c†j − c†j+1)(cj − cj+1)− 1

= −(c†j cj+1+ c†j+1cj )+ nj + nj+1− 1 (83)

(cf (53)), which is the Hamiltonian density of a system of free fermions. The odd generators
of symmetries are

E1
2 =

L∑
j=1

ej
1
2→

L∑
j=1

c
†
j (84)

E2
1 =

L∑
j=1

ej
2
1→

L∑
j=1

cj . (85)

From the even generators we can construct only one non-trivial combination,

1
2(E

2
2 − E1

1 + L)→ N̂ =
L∑
j=1

nj . (86)

Of course, being a model of free fermions, (83) is trivial in the sense that the corresponding
Hamiltonian can be diagonalized by Fourier transform. We wrote down the above formulae
in order to illustrate the general formalism. The reader can easily repeat all the steps
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for the case of the supersymmetrict–J -model, where the Hamiltonian density is given by
Hjj+1 = −Pjj+1 with Pjj+1 according to equation (61).

Let us indicate the Hamiltonian density of the gl(2|2) invariant model [19, 20] using
the fermionic representation (57). (43) and (40) imply that

Hjj+1 = −Pjj+1 = −P ↑jj+1P
↓
jj+1

= − (1− (c†j↑ − c†j+1↑)(cj↑ − cj+1↑))(1− (c†j↓ − c†j+1↓)(cj↓ − cj+1↓)). (87)

Here the minus sign on the right-hand side has been chosen in order to meet the usual
conventions. If we open the brackets in (87), we obtain the rather voluminous expression
H 0
jj+1 of Eßleret al (cf, e.g. equation (8) in [19]), which we do not repeat here due to space

limitations. Since [Pjj+1, E
β
α ] = 0, α, β = 1, 2, 3, 4, we may add, for instance,UE4

4, U
real, to the Hamiltonian obtainable from (87) without spoiling integrability (see [19, 20]).
This amounts to adding a Hubbard interactionUnj↑nj↓ to the Hamiltonian density. Note
that the factorized form (87) ofHjj+1 appears to be new.

Here is a more recent example. Maassarani and Mathieu constructed an ‘su(N )
analogue’ of the XX model and found the correspondingR-matrix [8]. We will show
that a certain fermionic representation of the ‘su(3) version’ of thisR-matrix generates
the Hamiltonian of the Hubbard model at infinite coupling. Let us write theR-matrix of
Maassarani and Mathieu in the form

Ř(u, v|δ) = sin(u− v)
N∑
α=2

(eiδe1
α ⊗ eα1 + e−iδeα1 ⊗ e1

α)

+
N∑
α=2

(e1
1 ⊗ eαα + eαα ⊗ e1

1)+ cos(u− v)
(
e1

1 ⊗ e1
1 +

N∑
α,β=2

eαα ⊗ eββ
)
. (88)

Note thatŘ depends on an additional free parameterδ. In order to meet our conventions
we modified the originalR-matrix of Maassarani and Mathieu by a gauge transformation
G, Ř → (G ⊗ G)Ř(G−1 ⊗ G−1), GeβαG

−1 = e
(β+1)modN
(α+1)modN . Clearly, Ř is regular. Let us

now restrict ourselves to the caseN = 3. ThenŘ is compatible with the gradingp(1) = 0,
p(2) = p(3) = 1. Let us consider the fermionic representation which is obtained fromYj ,
equation (57), by deleting the fourth row and column. Using (40) we obtain the Hamiltonian
density

Hjj+1 =
∑
σ=↑,↓

(eiδc
†
jσ cj+1,σ + e−iδc

†
j+1,σ cjσ )(1− nj,−σ )(1− nj+1,−σ ). (89)

We see thatδ is connected to local gauge transformations. Settingδ = π , Hjj+1 turns into
the Hamiltonian density of the Hubbard model at infinite coupling, which is the same as
the restricted hopping part of the supersymmetrict–J -Hamiltonian. Hence the Hamiltonian
can be written in the more familiar form

H = −
L∑
j=1

1(c
†
jσ cj+1,σ + c†j+1,σ cjσ )1 (90)

where1, equation (60), is the projection operator which excludes double occupancy. Of
course, (90) only makes sense, if the number of particles is less thanL.

Algebraic Bethe ansatz for the Hubbard model in the infinite coupling limit

We can now apply the algebraic Bethe ansatz [21] to construct eigenvectors of the
Hamiltonian (90). We shall regard equation (33) as a set of algebraic relations between
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the elements of the monodromy matrixT (u,w). SinceT (u,w) is a function ofu− w in
this case, we shall simply writeT (u,w) = T (u−w) hereafter. Following Maassarani and
Mathieu [8], we shall use the notation

T (u) =
(
S(u) C1(u) C2(u)

B1(u) t11(u) t12(u)

B2(u) t21(u) t22(u)

)
. (91)

Let |0〉 denote the vacuum state defined bycj |0〉 = 0. Using the explicit form of the
L-matrix, which follows from (27), (88),

Lj (u) =
 cosuYj 1

1− sinu(Yj 2
2+ Yj 3

3) Yj
1
2 Yj

1
3

Yj
2
1 − sinuYj 1

1− cosuYj 2
2 − cosuYj 2

3

Yj
3
1 − cosuYj 3

2 − sinuYj 1
1− cosuYj 3

3


(92)

we can easily see that

T (u)|0〉 =
(
s(u)|0〉 ∗ ∗

0 t (u)|0〉 0
0 0 t (u)|0〉

)
(93)

wheres(u) = cosL(u), t (u) = (−1)L sinL(u). This equation indicates that the vacuum|0〉
is an eigenstate of the transfer matrix. Following the procedure of the nested algebraic
Bethe ansatz [2, 17], we assume the state

|λ1, . . . , λp〉 = Fa1...apCa1(λ1) . . . Cap (λp)|0〉 (94)

to be an eigenstate of the transfer matrix. Here summation overaj = 1, 2 is understood.
The commutation rules between the elements of the monodromy matrix can be extracted

from (33),

Ca(u)Cb(v) = Ca(v)Cb(u) (95)

S(u)Ca(v) = cot(u− v)Ca(v)S(u)− Ca(u)S(v)
sin(u− v) (96)

taa (u)Cb(v) = cot(u− v)Ca(v)tab (u)−
Ca(u)t

a
b (v)

sin(u− v) . (97)

Comparing these commutation rules with the ungraded case in [8], we notice that there
appear extra minus signs when commutingtaa (u) andCb(v). We use the above relations to
calculate the action of the transfer matrix str(T (u)) on the state|λ1, . . . , λp〉. The resulting
terms are classified as wanted terms and unwanted terms, respectively. The wanted terms are
p∏
j=1

cot(u− λj ){s(u)|λ1, . . . , λp〉 − t (u)(τ (p)F )a1...apCa1(λ1) . . . Cap (λp)|0〉}. (98)

Hereτ (p) is the shift operator on a 2L-dimensional auxiliary space, which may be realized
as the space of states of ap-site spin -12 chain. Its matrix elements are given as

τ (p)
b1...bp

a1...ap
= δb1

ap
δb2
a1
. . . δ

bp
ap−1. (99)

The wanted terms are proportional to|λ1, . . . , λp〉, if F is an eigenvector of the shift operator
τ (p) with eigenvalue3(p). On the other hand, in order for the unwanted terms to cancel
each other, we have the condition

τ (p)F = (−1)L cotL(λj )F. (100)
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The spectrum ofτ (p) is fixed by the condition(τ (p))p = 1. This condition implies that
the spectrum consists of powers of thepth root of unity (cf appendix B of [10]). The
eigenvalue3(u) of the transfer matrix str(T (u)) is thus given as

3(u) = (s(u)− t (u)ei2πl
p )

p∏
j=1

cot(u− λj ) (101)

whereλj , j = 1, . . . , p, is a solution of the Bethe ansatz equations

(−1)L cotL(λj ) = e
i2πl
p l = 0, . . . , p − 1. (102)

The only remaining problem is the explicit construction of eigenvectors of the shift
operatorτ (p). This is, of course, a highly degenerate problem. We may use any integrable
spin -1

2 chain with regularR-matrix to solve this problem. A particularly simple choice is

the XX spin chain. ItsR-matrix Ř is given by equation (88) withN = 2 andδ = 0. The
L-matrix in (non-graded) spin representation is

Lj(u) =
(

cos(u)ej 1
1+ sin(u)ej 2

2 ej
1
2

ej
2
1 sin(u)ej 1

1+ cos(u)ej 2
2

)
. (103)

Let us use the notation

T (u) =
(
A(u) B(u)

C(u) D(u)

)
(104)

for the monodromy matrixT (u) = Lp(u) . . . L1(u). With the choice|0) = (1
0

)⊗p
of auxiliary

vacuum, we obtain

T (u)|0) =
(

cosp(u)|0) ∗
0 sinp(u)|0)

)
(105)

which shows that the auxiliary vacuum is an eigenstate of the transfer matrix tr(T (u)). To
construct the eigenstates of tr(T (u)) we need the commutation relations

[B(u), B(v)] = 0 (106)

A(u)B(v) = − cot(u− v)B(v)A(u)+ B(u)A(v)

sin(u− v) (107)

D(u)B(v) = cot(u− v)B(v)D(u)− B(u)D(v)

sin(u− v) (108)

which are part of the Yang–Baxter algebra (33). Proceeding as above, we consider the
action of the transfer matrix tr(T (u)) = A(u)+D(u) on the state

|µ1, . . . , µs) = B(µ1) . . . B(µs)|0). (109)

It turns out that|µ1, . . . , µs) is an eigenstate of tr(T (u)) with eigenvalue

3(p)(u) = {(−1)s cosp(u)+ sinp(u)}
s∏

j=1

cot(u− µj) (110)

if the parametersµj , j = 1, . . . , s, satisfy the equation

cotp(µj ) = (−1)s+1. (111)

Equation (110) implies in particular that

3(p)(0) =
s∏

j=1

cot(µj ). (112)
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In order to introduce a convenient basis let us use the operatorsej
1
a
. ej

1
a

applied to the
auxiliary vacuum|0) places an↑-spin at sitej , if a = 1, and a↓-spin, if a = 2. The states
e1

1
a1
. . . ep

1
ap
|0) form an orthonormal basis of our auxiliary Hilbert space, sinceej

b
1ej

1
a
= δbaej 1

1

and ej 1
1|0) = |0). The components of the shift operatorÛ = tr(T (0)) with respect to this

basis are

(0|epbp1 . . . e1
b1
1 Ûe1

1
a1
. . . ep

1
ap
|0) = (0|epbp1 . . . e1

b1
1 e2

1
a1
. . . ep

1
ap−1
e1

1
ap
|0) = δb1

ap
δb2
a1
. . . δ

bp
ap−1

(113)

such that we can identifyτ (p) with Û . LetF = |µ1, . . . , µs). It follows from equation (112)
that

τ (p)F =
s∏

j=1

cot(µj )F. (114)

Now equation (111) implies that( s∏
j=1

cot(µj )

)p
= (−1)s(s+1) = 1 (115)

and we have verified that the eigenvalues ofτ (p) are indeed powers of thepth root of unity.
Note that the components ofF with respect to our basis, which enter the definition (94) of
|λ1, . . . , λp〉 can be written as

Fa1...ap = (0|epap1 . . . e1
a1
1 B(µ1) . . . B(µs)|0). (116)

We can use the symmetries of the monodromy matricesT (u) and T (u) to deduce
restrictions on the numbersp and s. Equation (44) implies that theR-matrix of the XX
chain is invariant underσ z, [R, σ z ⊗ I2+ I2⊗ σ z] = 0. Let

6z =
p∑
j=1

σ zj . (117)

This is twice the operator of thez-component of the total spin. We infer from (46) that
[T (u), σ z] = [6z, T (u)]. B(u), in particular, commutes with6z as

6zB(u) = B(u)(6z − 2). (118)

Thus
1
26

z|µ1, . . . , µs) = 1
2(p − 2s)|µ1, . . . , µs). (119)

|µ1, . . . , µs) is an eigenvector of thez-component of the operator of total spin with
eigenvalue1

2(p − 2s). This eigenvalue cannot be smaller than− 1
2p. Therefores 6 p.

Using once more equation (44) we find that theR-matrix of the Hubbard model in the
infinite coupling limit is invariant under the even generators of gl(1|2), e1

1, e2
2, e3

3, e2
3, e3

2.
They span the Lie algebra gl(1)⊕gl(2). The matrixe2

2+e3
3 generates the symmetry operator

N̂ =
L∑
j=1

(Yj
2
2+ Yj 3

3) =
L∑
j=1

(nj↑ + nj↓ − 2nj↑nj↓). (120)

This is the particle number operator on our restricted Hilbert space, where double occupancy
of sites is forbidden. Equation (46) implies that [N̂, T (u)] = [T (u), e2

2 + e3
3] and, in

particular, that

N̂Ca(u) = Ca(u)(N̂ + 1). (121)
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We conclude that

N̂ |λ1, . . . , λp〉 = p|λ1, . . . , λp〉. (122)

The state|λ1, . . . , λp〉 is constructed by acting on the vacuum with operators, which leave
the Hilbert space with no double occupancy invariant. Therefore it can contain at mostL

particles, andp 6 L.
Let us perform a naive counting of states. We shall start with the auxiliary spin states

|µ1, . . . , µs). Equation (111) hasp solutions for everyj = 1, . . . s. The equivalence of
XX chain and a chain of spinless fermions suggests that allµj have to be different. States
|µ1, . . . , µs), which merely differ by the order of theµj , are identical due to (106). It
follows that we can order theµj asµ1 < · · · < µs . The number of solutions of (111)
which satisfy this ordering is

∑p

s=0

(
p

s

) = 2p. Let us assume that theλj , too, are pairwise
distinct. Then we can order them asλ1 < · · · < λp, because of (95). The total number
of states satisfying the above restrictions is

∑L
p=0

(
L

p

)
2p = 3L, which is the dimension of

our Hilbert space. This strongly suggests that our algebraic Bethe ansatz solution provides
us with a complete set of states. An actual proof would require calculation of all scalar
products of the form〈λ1, . . . , λp|λ′1, . . . , λ′p〉, which is feasible, yet beyond the scope of
this article.

We want to point out that the states|λ1, . . . , λp〉 are eigenstates of thez-component of
the total spin operator. The proof goes as follows. TheR-matrix of the Hubbard model in
the infinite coupling limit is invariant under12(e

2
2 − e3

3). Now

Sz = 1
2

L∑
j=1

(nj↑ − nj↓) = 1
2

L∑
j=1

(Yj
2
2− Yj 3

3) (123)

and equation (46) implies that [Sz, T (u)] = 1
2[T (u), e2

2− e3
3], or, for the elementsCa(u) of

the monodromy matrix,

[Sz, Ca(u)] = 1
2(σ

z)baCb(u). (124)

It follows that

Sz|λ1, . . . , λp〉 = 1
2(6

zF )a1...apCa1(λ1) . . . Cap (λp)|0〉
= 1

2(p − 2s)|λ1, . . . , λp〉. (125)

Let us compare our results with the recent coordinate Bethe ansatz solution of the model
by Izerginet al [22]. The one-particle algebraic Bethe ansatz states are easily shown to be
of the form

Ca(λ)|0〉 ∝
L∑
j=1

(− tan(λ))j c†j,a|0〉 (126)

wherecja = cj↑, if a = 1, andcja = cj↓, if a = 2. From this equation we identify the
quasimomentak(λ) of one-particle states as

eik(λ) = − tan(λ). (127)

Let us perform a similar reparametrization for the auxiliary spin problem,

eiq(µ) = tan(µ). (128)

Then, using (115), we can rewrite the Bethe ansatz equations (102) and (111) as

eikjL = ei
∑s

k=1 qk j = 1, . . . , p (129)

eiqkp = (−1)s+1 k = 1, . . . , s (130)
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where kj = k(λj ), qk = q(µk). These equations agree with the Bethe ansatz equations
obtained in [22].

Equation (37) implies that the energyE of a state|λ1, . . . λp〉 is

E = ∂u ln(3(u))|u=0 =
p∑
j=1

(tan(λj )+ cot(λj ))

= −2
p∑
j=1

cos(kj ). (131)

Equations (122) and (125) show that the states|λ1, . . . λp〉 are also eigenstates of the particle
number operator̂N and thez-component of the total spinSz. We may thus add a chemical
potential and a magnetic field to our Hamiltonian (90),H → Hµ,B ,

Hµ,B =
L∑
j=1

{−1(c†jσ cj+1,σ + c†j+1,σ cjσ )1− µ(nj↑ + nj↓)+ B(nj↑ − nj↓)}. (132)

ThenHµ,B |λ1, . . . , λp〉 = Eµ,B |λ1, . . . , λp〉, where

Eµ,B = −2
p∑
j=1

cos(kj )− µp + B(p − 2s). (133)

This means that the algebraic Bethe ansatz states|λ1, . . . , λp〉 can be used to calculate form
factors and correlation functions in the grand canonical ensemble (cf [22]).

Yangian symmetry of the Hubbard model in the infinite coupling limit

The Hubbard Hamiltonian on the infinite interval is invariant under the direct sum of two
su(2) Yangian quantum groups [23, 24]. We would like to point out here, that one of these
Yangian symmetries survives the infinite coupling limit. First of all, let us recall [25] that
the su(2) Yangian is a Hopf algebra which is spanned by two triples of generatorsI a, J a,
a = x, y, z, satisfying the relations

[I a, I b] = cabcI c (134)

[I a, J b] = cabcJ c (135)

[[J a, J b], [I c, J d ]] + [[J c, J d ], [I a, J b]] = −4(aabefghccde + acdefghcabe){I f , I g, J h}.
(136)

Herecabc = iεabc is the antisymmetric tensor of structure constants of su(2), andaabcdef =
cadgcbehccf icghi . The bracket{ } in (136) denotes the symmetrized product

{x1, x2, x3} = 1
6

∑
i 6=j 6=k 6=i

xixjxk. (137)

Being a Hopf algebra Y(su(2)) carries an outer structure (co-multiplication, antipode, co-
unit), which guarantees that Y(su(2)) has a rich representation theory [26].

As a corollary of a theorem proven in [27] it follows that

I a =
∑
j

Saj (138)

J a =
∑
j 6=k

sign(j − k)εabcSbj Sck (139)
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form a representation of Y(su(2)). TheSaj in this equation are spin density operators in
fermionic representation (62).I a obviously commutes with the Hubbard Hamiltonian in
the infinite coupling limit (90). We will give a simple proof [28] thatJ a, too, commutes
with the Hamiltonian (90), if we replace the summation in (90) by a summation over all
integers. LetSajk = 1

2σ
a
αβc
†
jαckβ , and define

Ka = 2i
∑
j

(Saj,j+1− Saj+1,j ). (140)

It was shown in [23, 27] that the Hubbard HamiltonianHH ,

HH = T + UD (141)

T = −
∑
j

(c
†
jσ cj+1σ + c†j+1σ cjσ ) (142)

D =
∑
j

nj↑nj↓ (143)

commutes with

J aU = J a + U−1Ka (144)

and thatI a andJ aU form a representation of the Y(su(2)) Yangian. SinceJ aU commutes with
HH for all realU , we obtain the identity [T , J a] = [Ka,D]. Now D1 = 1D = 0, and
[1, J a] = 0, since [1, Saj ] = 0. It follows that

[H, J a] = [1T1, J a] = 1[T , J a]1 = 1[Ka,D]1 = 0. (145)

Let us remark that a more systematic way to explore the Yangian symmetry of the
model would be to apply the approach developed in [29, 24, 30], where the Yang–Baxter
algebra was investigated in the thermodynamic limit. This approach would also provide us
with the action of the Yangian on eigenstates.

Conclusions

We would like to stress that our approach is widely applicable. Given a solutionR(u, v)

of the Yang–Baxter equation (22), it consists of the following steps.
(i) Use equation (26) to choose a grading which is compatible with theR-matrix. In

general, this choice is not unique. A givenR-matrix may be compatible with different
gradings.

(ii) For a given grading choose a fermionic representation. Start with a tensor product
representation (66) of projection operatorsYj βα of sufficiently high dimension and adjust it
to the grading by deleting rows and columns ofYj

β
α
. Again the choice is not unique.

(iii) Write down the Hamiltonian (40) and replace the graded spin operatorsej
β
α

by
fermionic projection operatorsYj βα . This Hamiltonian is integrable by construction. There
may be different methods to diagonalize it.

(iv) The Hamiltonian can be diagonalized by (nested) coordinate Bethe ansatz.
(v) It may be possible to diagonalize the Hamiltonian algebraically. In this case theL-

matrix is obtained from equation (27), and the graded Yang–Baxter algebra is given by (30).
Note, however, that there is no general recipe for an algebraic Bethe ansatz. Depending on
the structure of theR-matrix and of the monodromy matrix an algebraic Bethe ansatz may
be a difficult task (cf, e.g. [31, 32]), if it is possible at all.

Our approach circumvents certain difficulties connected with the Jordan–Wigner
transformation, which, in certain cases, may be alternatively used to connect a spin



Fermionic representations of integrable lattice systems 7749

representation of an integrable system with a fermionic representation. In our approach
there is no twisting of the boundary conditions, and symmetries are directly obtainable
via equation (44). Our approach works for higher su(N ) spins where no Jordan–Wigner
transformation is known.

The main example to illustrate our ideas was the Hubbard model in the infinite coupling
limit. An interesting lesson to learn from this example is that the Hubbard model in the
infinite coupling limit is equivalent to a su(3)-spin generalization of the XX spin chain.
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